Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

考慮通信時延和測量噪聲的風電場有功優(yōu)化調(diào)度

來源:電工電氣發(fā)布時間:2025-08-22 10:22 瀏覽次數(shù):10

考慮通信時延和測量噪聲的風電場有功優(yōu)化調(diào)度

郭濱豪,石樹杰
(國防科技大學 電子對抗學院,安徽 合肥 230027)
 
    摘 要:隨著風電技術的發(fā)展,風機疲勞損傷成為風電場運營中的重要問題。針對風機主軸和塔架疲勞損傷的實時計算,提出了一種幅度自適應實時雨流計數(shù)法,建立了基于能量守恒的主軸扭矩和塔架推力模型,以準確預測滿負荷風機承受的應力,在兩者基礎上,結合 SoftMax 函數(shù),構建出 Min-Max 優(yōu)化模型,通過固定時隙優(yōu)化有功功率,以最小化風機組總損耗,并采用交替優(yōu)化功率和風速的方法降低測量噪聲帶來的偏差。仿真結果表明,該方法顯著降低了風機的累積疲勞損傷,提高了風電場運行效率和控制平穩(wěn)性。
    關鍵詞: 風電場;通信時延;測量噪聲;實時雨流計數(shù)法;Min-Max 優(yōu)化模型;疲勞損傷
    中圖分類號:TM315 ;TM614     文獻標識碼:A     文章編號:1007-3175(2025)08-0052-09
 
Active Power Optimal Dispatch for Wind Farms Considering
Communication Delay and Measurement Noise
 
GUO Bin-hao, SHI Shu-jie
(School of Electronic Countermeasures, National University of Defense Technology, Hefei 230027, China)
 
    Abstract: With the development of wind turbine technology, the issue of fatigue damage in wind turbines has emerged as a critical concern in wind farm operational management. For real-time fatigue damage assessment of wind turbine main shafts and towers, an amplitude adaptive real-time rainflow counting method is proposed. An energy conservation-based model of main shaft torque and tower thrust was established to accurately predict the stress experienced by wind turbines under full load. Based on the two, combined with the SoftMax function, a Min-Max optimization model was constructed. The active power was optimized through a fixed time slot to minimize the total loss of the fan unit, and the deviation caused by measurement noise was reduced by alternately optimizing the power and wind speed. Simulation results show that this method significantly reduces cumulative fatigue damage to wind turbines, improving the operational efficiency and smooth control of wind farms.
    Key words: wind farm; communication delay; measurement noise; real-time rainflow counting method; Min-Max optimization model;fatigue damage
 
參考文獻
[1] 劉穎明,趙哲,王曉東,等. 考慮機組疲勞載荷的風電集群有功功率分配方法[J] . 太陽能學報,2021,42(5) :430-436.
[2] 武曉冬,席鵬輝,趙錕,等. 基于疲勞分布的風電場有功優(yōu)化調(diào)度策略[J] . 科學技術與工程,2024,24(22) :9400-9407.
[3] 吳云玉. 基于生物質(zhì)固體成型機理研究的環(huán)模疲勞壽命分析[D]. 濟南:山東大學,2010.
[4] 徐超,馬瑤瑤,黃玉玲,等. 基于反相積分峰值檢測法的高頻信號 AGC 系統(tǒng)[J] . 儀表技術與傳感器,2023(1) :65-69.
[5] 伍凌云,何笠,楊可,等. 基于特高壓和超高壓直流互聯(lián)的送端電網(wǎng) AGC 系統(tǒng)控制策略[J]. 電力自動化設備,2021,41(8) :183-188.
[6] 咸博. 考慮疲勞載荷分布的海上風電機組出力優(yōu)化控制[J]. 機械管理開發(fā),2024,39(6) :167-169.
[7] 劉建爽,李鋼強,劉祥銀,等. 基于扇區(qū)載荷的風電機組塔筒焊縫疲勞強度分析[J]. 風能,2020(8) :66-70.
[8] 潘沈愷,高丙團,毛永恒,等. 考慮機組疲勞載荷的風電場快速有功功率分配方法[J] . 電力系統(tǒng)自動化,2024,48(15) :112-121.
[9] YAO Qi, HU Yang, ZHAO Tianyang, et al.Fatigue load suppression during active power control process in wind farm using dynamic-local-reference DMPC[J].Renewable Energy,2022,183 :423-434.
[10] 史蒂文·凱. 統(tǒng)計信號處理基礎 第 1 卷 估計理論[M].北京:世界圖書出版有限公司北京分公司,2022.
[11] SHANG Zhihao, HE Zhaoshuang, YAO Chen, et al.Short-term wind speed forecasting system based on multivariate time series and multi-objective optimization[J].Energy,2022,238 :122024.
[12] PANG Yong, SHI Maolin, ZHANG Liyong, et al.A multivariate time series segmentation algorithm for analyzing the operating statuses of tunnel boring machines[J].Knowledge-Based Systems,2022,242 :108362.
[13] 金秋霞,彭鵬,孫萍玲,等. 考慮噪聲影響的風電場功率分配優(yōu)化模型[J] . 太陽能學報,2023,44(4) :115-124.
[14] LIU Ge, LIU Jun, LIU Andong.Mitigating subsynchronous oscillation using intelligent damping control of DFIG based on improved TD3 algorithm with knowledge fusion[J].Scientific Reports,2024,14(1) :14692.
[15] BACH Francis. Sum-of-squares relaxations for polynomial min-max problems over simple sets[J].Mathematical Programming,2025,209 :475-501.
[16] 祁忠勇,李威錆,林家祥,等. 信號處理與通信中的凸優(yōu)化:從基礎到應用[M]. 北京:電子工業(yè)出版社,2020.
[17] MIKHAIL Moklyachuk.Convex Optimization: Introductory Course[M].Hoboken :Wiley Online Library,2021.
[18] ZHANG Hengmin, GAO Junbin, QIAN Jianjun, et al.Linear Regression Problem Relaxations Solved by Nonconvex ADMM with Convergence Analysis[J].IEEE Transactions on Circuits and Systems for Video Technology,2024,34(2) :828-838.