Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

基于改進海鷗優(yōu)化算法的有源配電網(wǎng)故障定位

來源:電工電氣發(fā)布時間:2025-07-24 13:24 瀏覽次數(shù):23

基于改進海鷗優(yōu)化算法的有源配電網(wǎng)故障定位

朱謝琰
(揚州三新供電服務有限公司寶應分公司,江蘇 揚州 225800)
 
    摘 要:分布式電源接入配電網(wǎng)后,故障電流特性發(fā)生改變,使得故障定位難度增加。針對有源配電網(wǎng)故障定位問題,提出一種基于改進海鷗優(yōu)化算法的有源配電網(wǎng)故障定位方法。對傳統(tǒng)配電網(wǎng)故障電流編碼方式進行改進使其適用于有源配電網(wǎng),同時提出有源配電網(wǎng)故障定位的開關函數(shù);對基本海鷗優(yōu)化算法進行改進,通過改進型 Logistics 混沌映射豐富初始化海鷗種群的多樣性;對線性參數(shù) H 進行非線性化處理,使其與收斂過程更匹配;引入正弦、余弦算子使算法在全局搜索和局部開發(fā)之間達到平衡,以提升尋優(yōu)質量,并實施自適應 t 分布變異以提升尋優(yōu)速度。通過在 IEEE 33 節(jié)點配電網(wǎng)算例中進行仿真驗證,經與其他智能優(yōu)化算法對比,結果表明改進后的海鷗優(yōu)化算法在定位速度、迭代次數(shù)、容錯性能方面具有顯著優(yōu)勢。
    關鍵詞: 分布式電源;配電網(wǎng);故障定位;改進海鷗優(yōu)化算法;容錯性能
    中圖分類號:TM711 ;TM727     文獻標識碼:B     文章編號:1007-3175(2025)07-0052-08
 
The Fault Location of Active Distribution Network Based on
Improved Seagull Optimization Algorithm
 
ZHU Xie-yan
(Baoying Branch of Yangzhou Sanxin Power Supply Service Co., Ltd, Yangzhou 225800, China)
 
    Abstract: After distributed power sources are connected to the distribution network, the characteristics of fault currents change, increasing the difficulty of fault location. Aiming at the problem of fault location in active distribution networks, a fault location method for active distribution networks based on the improved seagull optimization algorithm is proposed. This paper improves the traditional fault current coding method of distribution networks to make it applicable to active distribution networks, and at the same time proposes the switch function for fault location in active distribution networks, then, the basic seagull optimization algorithm is improved, and the diversity of the initialized seagull population is enriched through the improved Logistics chaotic mapping. Perform nonlinearization processing on the linear parameter H to make it more compatible with the convergence process; the sinusoidal and cosine operators are introduced to achieve a balance between global search and local development of the algorithm, so as to improve the optimization quality, and adaptive t-distribution variation is implemented to enhance the optimization speed. Through simulation verification in the IEEE 33-node distribution network example and comparison with other intelligent optimization algorithms, the results show that the improved seagull optimization algorithm has significant advantages in positioning speed, the number of iterations, and fault-tolerant capability.
    Key words: distributed generation; distribution network; fault location; improved seagull optimization algorithm; fault-tolerant performance
 
參考文獻
[1] 王成山,李鵬,于浩. 智能配電網(wǎng)的新形態(tài)及其靈活性特征分析與應用[J] . 電力系統(tǒng)自動化,2018,42(10) :13-21.
[2] 詹惠瑜,劉科研,盛萬興,等. 有源配電網(wǎng)故障診斷與定位方法綜述及展望[J] . 高電壓技術,2023,49(2) :660-671.
[3] 劉健,倪建立,杜宇. 配電網(wǎng)故障區(qū)段判斷和隔離的統(tǒng)一矩陣算法[J] . 電力系統(tǒng)自動化,1999,23(1) :31-33.
[4] 衛(wèi)志農,何樺,鄭玉平. 配電網(wǎng)故障定位的一種新算法[J]. 電力系統(tǒng)自動化,2001,25(14) :48-50.
[5] 徐彪,尹項根,張哲,等. 矩陣算法和優(yōu)化算法相結合的配電網(wǎng)故障定位[J] . 電力系統(tǒng)自動化,2019,43(5) :152-158.
[6] 董曉峰,朱葉葉,王啟華. 基于遺傳算法的配電網(wǎng)區(qū)段故障定位及容錯能力分析[J] . 中國工程機械學報,2023,21(6) :607-612.
[7] 顏景斌,夏賽,王飛,等. 基于改進遺傳算法的有源配電網(wǎng)故障定位分析[J] . 電力系統(tǒng)及其自動化學報,2019,31(6) :107-112.
[8] CAO Heling, WANG Fei, DENG Miaolei, et al. Software multiple-fault localization using particle swarm optimization via genetic operation[J].Journal of King Saud University-Computer and Information Sciences,2023,35(4) :21-35.
[9] 吳恬微. 改進蟻群算法在配電網(wǎng)故障定位中的應用[J] . 蘭州文理學院學報(自然科學版),2022,36(2) :22-27.
[10] 鄭聰,周海峰,鄭東強,等. 基于改進多元宇宙算法的主動配電網(wǎng)故障定位方法研究[J]. 電力系統(tǒng)保護與控制,2023,51(2) :169-179.
[11] 嚴太山. 基于人類進化算法的配電網(wǎng)故障定位[J]. 儀器儀表學報,2015,36(3) :694-700.
[12] 畢忠勤, 楊小婷, 王寶楠, 等. 基于量子退火算法的配電網(wǎng)故障定位[J] . 科學技術與工程,2023,23(31) :13394-13406.
[13] 張蓮,張尚德,賈浩,等. 基于改進鯨魚算法的配電網(wǎng)故障區(qū)段定位[J]. 浙江電力,2022,41(12) :63-70.
[14] 張昊立,張菁,倪建輝,等. 基于改進麻雀算法的配電網(wǎng)故障定位[J] . 電力科學與工程,2022,38(11) :25-33.
[15] 駱通,何晉,管恩齊,等. 基于 SABSO 算法的含分布式電源配電網(wǎng)故障定位[J] . 電力電容器與無功補償,2022,43(5) :174-180.
[16] 楊國華,馮驥,柳萱,等. 基于改進禿鷹搜索算法的含分布式電源配電網(wǎng)分區(qū)故障定位[J]. 電力系統(tǒng)保護與控制,2022,50(18) :1-9.
[17] 彭維馨,李澤文,夏翊翔,等. 基于改進象群算法的配電網(wǎng)混合線路故障定位方法[J]. 電力系統(tǒng)及其自動化學報,2022,34(11) :1-11.
[18] 韓毅,徐梓斌,張亮,等. 國外新型智能優(yōu)化算法——海鷗優(yōu)化算法[J] . 現(xiàn)代營銷(經營版),2019(28) :70-71.
[19] CAO Yan , LI Yiqing , ZHANG Geng , et al .Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm[J].Energy Reports,2019,5 :1616-1625.
[20] WANG Yule, WANG Wanliang, AHMAD Ijaz, et al.Multi-Objective Quantum-Inspired Seagull Optimization Algorithm[J].Electronics,2022,11(12) :1834.
[21] LONG Wen, JIAO Jianjun, LIANG Ximing, et al.Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm [J].Energy,2022,249 :123760.
[22] 張冰潔,何慶,戴松利,等. 多方向螺旋搜索的混沌海鷗優(yōu)化算法[J] . 小型微型計算機系統(tǒng),2023,44(3) :536-543.
[23] 曾祥秋,葉瑞松. 基于改進 Logistic 映射的混沌圖像加密算法[J]. 計算機工程,2021,47(11) :158-165.
[24] 周冬,陳阜東,鄒紅波,等. 基于改進煙花算法的可再生能源動態(tài)經濟調度分析[J] . 智慧電力,2019,47(5) :59-64.
[25] 張超,楊憶. 引入正弦余弦算子和新自花授粉的花授粉算法[J]. 西安工程大學學報,2023,37(2) :119-129.
[26] 楊榮瑩,何慶,王茜,等. 交互信息的動態(tài)選擇布谷鳥算法[J] . 小型微型計算機系統(tǒng),2020,41(11) :2260-2267.